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NUPATION DAMPER - A SIMPLE TWO-BODY GYROSCOPIC SYSTEM 

ABSTRACT 

Two rigid bodies are pinned together on an axis which is a prin- 

cipal axis of inertia for each body; they are free to spin about this 

axis, except for some friction between them; the system is free in 

space; one of these bodies is inertially asymmetric about this mutual 

axis; and - for simplicity - the other body is symmetric. If this 
assembly is inertially more nearly like a disc than a spindle, it 

settles in such a position that the mutual axis is aligned with the 

stationary vector of the angular momentum of this system. Thus it 

constitutes a means of internal and passive damping of the random 

nutations. 

The behavior of this system is inspected by considering the numer- 

able solution of an example (in which one of the two bodies is a thin 

disc, and the other is a thin rod which is always aliened with nomp 

diameter of the disc). The nature of the solutions is indicated 

sufficiently clearly by isometric views of the trajectories of the 

vector of angular momentum of the system in a coordinate system fixed 

with respect to the asymmetric body (these trajectories are termed, 

somewhat arbitrarily, "polhodes"). The two extremes of the friction 



(the "clamped" and the frictionless assembly) are outlined, and it 

is shown that 'in a variation of the friction between these two ex- 

tremes there occurs a rather peculiar change in the behavior of the 

system: a form of nutation corresponding to the "unstable" spin of 

a rigid body becomes "metastable". The emphasis of the presentation, 

is on the legitimacy and usefulness of a rather primitive "empirical" 

mathematical approach. 
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This paper describes a nonlinear system of four ordinary f i r s t -  

order d i f f e r en t i a l  equations which represent the behavior of a rather  

basic assembly of two r i g i d  bodies-a device which seems t o  be of 

par t icu la r  i n t e r e s t  because by v i r tue  of i t s  simplicity it may be 
Y 

ranked next t o  the c l a s s i ca l  problem of the nutations of a r i g i d  body. 

This device has been suggested (by D r .  C. J. Cohen of Naval 

Weapons Laboratory, Dahlgren, Virginia,  and o thers ) ,  as a "nutation 

damper" f o r  observation s a t e l l i t e s .  It const i tutes  a passive system 

(one containing f r i c t i o n ,  but involving no power sources, no lo s s  of 

mass of the s a t e l l i t e ,  and no external forces - such as  magnetic) 

which converts the random nutations of the s a t e l l i t e  into  a smooth spin 

about the vector of the a n ~ a l a r  momentum of the system. A s  w i l l  be 

discussed, such a &stem can s t ab i l i ze  an assembly which - i n e r t i a l l y  - 
i s  roughly of an oblate shape. An ancient (though apparently never 

spec i f ica l ly  formulated) desideratum of b a l l i s t i c s  i s  an " in te rna l  

s tabi l izat ion" of a spindle. However, it appears - so f a r  - t h a t  a 

prolate  shaped assembly can only be "destabilized" by the system here 

considered. 
t 

* I n  t h e i r  review of nonlinear mechanics (I), Leimanis and Minorsky 
define as  a bnslc c lass  of nonlinear problems tha t  of the motion of 
a r i g i d  body fixed a t  a point .  Basically, these are  third-order 
problems (e.@;. , a gyroscope i n  gimballs i s  a three-body assembly, 
but has only three degrees of freedom). To t h a t  c lass  one may add 
an important sub-class, the theory of p ro jec t i l e  s t a b i l i t y  i n  
b a l l i s t i c s j  f o r  a p ro j ec t i l e  is usually considered as  a r i g i d  body, 
and - though the problem i s  often l inear ized - many complications 
a r i s e  from the mathematical nonlinearity of the forces ac t ing  upon 
the pro jec t i l e  (2) .  The problem i s  usually construed as one of the 
fourth-order, but of a par t icu la r ,  "epicyclic:' subclasa of t h a t  
order, which reduces t o  the second order i n  complex variables 
( 3 ) .  On the  other hand,,many other rad ica l  complications of the 
general b a l l i s t i c  problem a r i s e  i n  those cases where the p ro j ec t i l e  
may no longer be considered a r i g id  body (as jus t  one example of 
t h i s  c lass  of problems we may mention a p ro j ec t i l e  containing l iqu id) ,  
and even i n  the case where the p ro j ec t i l e  may no longer be considered 
a body having i n e r t i a l  ax i a l  symmetry. For these reasons, thAt 
large extension of Leimanis-Minorsky's c lass i f ica t ion ,  the motion of 
systems of bodies, w i l l  eventually be of in te res t ;  and i n  such a 
c lass ,  the problem here considered seems indeed the simplest one. 



Our approach t o  the problem described here has been "empirical", 

viz. ,  ra ther  primitive: it has been simply an inspection of the 

numerical solutions of t h i s  system with "semple" inputs. This approach 

i s  handicapped by imperfections of the  available analog computing 

machinery; yet ,  a general understanding of the behavior of such a 

system does emerge from such inspection. In  par t icular ,  there have 

been found some unexpected pecu l i a r i t i e s  i n  the  behavior of t h i s  

system; they seem t o  leave room f o r  hope t h a t  an eventual " in ternal -  

passive" s t ab i l i za t ion  of a spindle might not be impossible. 



2. STATEMENT OF THE PROBLEM 

Two r i g l d  bodies a r e  pinned together  on an ax i s  which i s  a 

p r i n c i p a l  a x i s  of i n e r t i a  f o r  each body; they a r e  f r e e  t o  s p i n  about 

t h i s  a x i s ,  except f o r  some f r i c t i o n  between them; the  system i s  f r e e  

i n  space; one of these bodies i s  i n e r t i a l l y  asymmetric about t h i s  

mutual axis ;  and - f o r  s impl ic i ty  - t h e  o the r  body i s  symmetric. 

The standard Lagrangian approach requi res  an in t roduct ion  of 

var iables  of analys is  t h a t  completely def ine ,  at each i n s t a n t ,  not  

only  t h e  angular  v e l o c i t i e s  of these  t,wo bodies, b u t  a l s o  t h e i r  

pos i t ion  ( v i z . ,  such coordinates as t h e  Eulerian angles @, 0 ,  q ) .  
A considerable s impl i f i ca t ion ,  however, becomes poss ib le  i n  our force-.  

f r e e  case, through approaching t h i s  problem v i a  a  genera l i za t ion  of 

Eu le r ' s  dynamical equations.  The ana lys i s  then y i e l d s  only  a p a r t  

of the  problem: t h e  polhodes ( t h e  paths of the  vectors  of angular 

ve loc i ty  i n  the  system-fixed coordinates);  but  t h i s  i s  t h e  p r i n c i p a l  

p a r t  of the  problem. Given t h e  polhodes as a funct ion  of time, t h e  

pos i t ion  of these  two bodies at  each i n s t a n t  can be - i f  and when 

needed - computed through t h e  Euler-Poinsot i n t e r p r e t a t i o n  of t h e  

motion a s  a  r o l l i n g  of t h e  polhode cones on t h e  herpolhode cones 

( t h e  pa ths  of t h e  vectors  of angular  v e l o c i t y  i n  a Newtonian coordinate 

system); i . e . ,  by a subsequent quadrature. This  i s  p a r t i c u l a r l y  

convenient i n  our fo rce - f ree  case,  where t h e  vec to r  of t h e  angular  

momentum of the  system i s  constant '  i n  t h e  Newtonian coordinate system. 



3. DERIVATION OF THE EQUATIONS 

Let the right-handed t r i a d s  of the  pr incipal  axes of the  two 

bodies be 1, 2, 3 and 4, 5 ,  6, with 3 and 6 being the common axis  

(Figure 1 ) .  Let the  moments of i n e r t i a  be I1 # 12, I f o r  one body; 
3 

and I4 = I5 (= I ) ,  I6 f o r  the other.  The components of the angular 

ve loc i t ies  of the  f i r s t  body are  ol, o 
2, ; and of the second body, 

a,+, 05, u6. Because of the constraint  on axes 3 and 6 the same 

vector i n  the 1-2-4-5 plane i s  described b y o  as by o ; thus 
41 5 1,2, 

the angular veloci ty  of the second body can also be described by 

01,2,6. 
* Therefore, the behavior of t h i s  system can be described by 

a four-dimensional vector, v i z . ,  by the angular ve loc i t ies  ol, 02, oj, 

06. 
Let the f r i c t i o n  torque act ing along the axis  3 on the f i r s t  body 

be F; t h i s  i s  some odd function of the  r e l a t i ve  angular velocity of the 

two bodies 

For simplicity we s h a l l  here assume the "viscous" f r i c t i o n  F = f p , f 
a posi t ive  constant. Let a l so  I + I Z K1, I + I K 

1 2 2' I3 + I6 = K3. 

The components of the angular momentum L of the system on the - 
moving axes 1, 2 3 are  re la ted  t o  the angular ve loc i t ies  by the 

following equations ( the f i r s t  two of which have the indicated simple 

form because of the simplifying assumption I,, = I ~ ) :  

* However, t h i s  vector suff ices  t o  define the angular momentum of the 
second body only i n  the  cases of the ax i a l  symmetry of t h i s  body, when 
any pa i r  (1,2) of transverse axes are  the pr incipal  axes.' 



Then the equations of motioti are 

The first three equatiorls express the conservation of the vector 

of the angular momentum L in space; they are simply a statement that - 
the derivative of this vector, which in our nutating system 1, 2, 3 is 

L - L x m, is zero. In this nutating system this vector is conserved - - -  
only in magnitude, and its direction continually changes. The fourth 

equation is simply Euler's equation for the axis 6, and its simplicity 

is another result of the assumption I4 = 15. These equations can be 

re-written in such forms as 

TFOHNICAL LIBBABY 
U S ARMY OEDNANOE 

AREEDEEN PCOV 1x0 QDOUND, HD: 
OllDBGTL 



Each one of these forms has some advantages. Thus, form (a) might 

appear the most natural; form (b) is particularly convenient when one 

needs to consider the mechanism of the friction in detailJ and form (c) 

is particularly convenient in visualizing the problem, for three reasons: 

firstly, it allows a visualization of L1, L2, L as coordinates of a 
3 

point on a sphere*; secondly, the third equation is free of p; and thirdly, 
the "angles of yaw" of the axes 1, 2, 3 nutating about the stationary - L 

are, of course, simply the angles from the axes 1, 2, 3 to the vector - L 
in the nutating system (whose directional oosines are L~/L, L~/L, L /L). 

3 
The term "polhode" applies, strictly, to the paths of the tips of the 

three-dimensional vectors co 1,2,3 and 01,2,6' and perhaps ought not be 

applied to the four-dimensional vectors col and L Yet the 
, ) >  1.,2,3,6' 

pathof the latter vectors can readily be converted to the true polhodes, 

and do specify the behavior of the system sufficiently clearly for our 

purposes. 

* This is particularly convenient in the work with an analog machine, 
since it facilitates keeping track of the imperfections of the machine. 



4. FORMULATION OF THE NUMERICAL EXAMPLE 

Our system is seen to be defined by no less than ten parameters. - 
With our empirical approach (and for our descriptive purposes) this is 

entirely too many, and we need to simplify the problem drastically, yet 

attempting to lose as little of the generality as possible. 

Five of these parameters characterize the system "inertially": in 

the forms (a) and (b) of our equations they are ratios such as I~/K~' 

(K2 - I~)/K~, etc.J in the form (c), expressions such as (1/1 + 1/K2), 3 
etc. These five parameters are restricted somewhat by the fact that the 

1's and the K's are moments of inertia; these restrictions amount to the 

fact that the 1's must be positive and such that they can form a 

triangle, viz., 

I~ + I* > I > I  I~ - 1 ~ 1  etc. 
3 

It can be shown that the number of the independent inertial 

parameters can be reduced from 5 to 3. However, for our present pur- 

poses such complete systematization is not imperative, and we shall 

not attempt it here". Rather, we shall limit ourselves to a single 

numerical example where 

16/1 = 2 (1 .e., the second body is a "thin disc"), and 

I1 = 0, 12/1 = I  /I = 0.1 (i.e., the first body is a small 3 
"thin rod" along the axis 1). 

The sixth parameter is the friction parameter, f/16, f/I or f 
3 

in our three forms of the equations. It completes the specification 

of the system itself. 

The remaining four parameters are the initial conditions; that 

is, (in our three forms of equations) the initial values of w 
1,2,3,6' 

of w 
1,213 

and p, or of L 
1,2,3,6' 

* Some remarks on departure from these assumptions are given in. section 
12. For the important case f = 0 a more thorough systematization of 
the inertial parameters of this system has been made by Masaitis (6). 



, . 
To simplify-o& arithmetic we may se l ec t  more convenient L.. 

uni t s  fo r  moments of i ne r t i a ,  angular momentum, time and f r i c t i o n  

coeff ic ient .  Although d i s t i nc t ly  non-linear, our system does possess 

a modicum of homeogeneity. E.g., i n  the form (c)  the expressions f o r  

the derivatives with respect t o  time a re  l i nea r  and homogeneous i n  the 
reciprocals of the moments of iner t ia ;  hence we may use an a rb i t ra ry  

uni t  of the  moments of i n e r t i a  i f  we adjust  the un i t  of time,accordingly. 

Furthermore, the f i r s t  three of these expressions are of the second 

order i n  the L's, and the fourth i s  l i nea r  i n  both L and f .' As f a r  as  

the second-order terms are  concerned, a fur ther  change i n  the uni t  of 

time i s  equivalent t o  multiplying a l l  i n i t i a l  conditions by a constant; 

and a s  f a r  as 'che terms containing f are  concerned, such change i s  

equivalent t o  a change of the f r i c t i o n  coefficient*. Thus we are f r ee  

t o  take an a rb i t r a ry  un i t  of time, provided we change the un i t  of f 

accordingly. We s h a l l  s e l ec t  the  un i t s  of time,angular momenta, moments 

of i n e r t i a  and f i n  such a way tha t  

We s h a l l  a lso r e s t r i c t  ourselves t o  the natural  case p(0) = 0,  

which corresponds t o  the  s i t ua t ion  where the two bodies are or iginal ly  

clamped together, and the operation of our mechanism s t a r t s  a t  the 
H 

ins tan t  they are  unclamped . 

* That i s ,  groups of terms of the type dL /d t  = L L /I can be i n t e r -  
preted as  dLl/d(t/a) = L L / ( I / a ) ,  and +urther,*as? d(bll@(t/b) .; 

( b ~ ~ ) ( b ~  )/I, where a an8 3 are  a rb i t ra ry j  while groups of the type 
3 

djL6/d.t = fL /1  can be interpreted as d(bL6)/d(t/b) = (b f ) (bL) /~ ,  e t c .  

W&th such transformations the solutions based on the assumption 
L = I = 1 can always be interpreted i n  t he  conventional uni ts  f o r  
L and I ( the  un i t  of time being ab; of I, a = Ij and of L, l / b ) .  

** E.g., the  two bodies forming a s a t e l l i t e  a r e  clamped by the acceler-  
a t ion of the propelling rocket, and the operation of the mechanism 
s t a r t s  when the propulsion ceases. 



5. CONSTANTS OF MOTION 

Two physical quantities are of particular interest in our study. 

One of these is the magnitude of the angular momentum of the 

system,. - L, given by 

Since there are no external forces acting on the system, this is 
* 

a constant of motion . This is one of the reasons for our preference 
of the form (c) of our equations. 

The other quantity is the kinetic energy T of the system, given 

where L6 = Ie6. 

Generally, this is not a constant of motions for it is readily 

seen (particularly from physical considerations) that T is in general 

dissipated in friction, at the rate which is the work consumed in 

friction. In fact, by multiplying the first four 'equations of (a) 

by ml, m2, u3, m6, and adding, we obtain 

* This can be readily checked by multiplying the first three equations 
of (c) by L1, L2, L3, adding and integrating. 



In fact, this is the principle of operation of this mechanism. 

If there is any energy flow because of the friction, the system settles 

in a state in which p = 0 and T is a minimum. Generally, one should 

expect this to occur about that axis about which the moment of inertia 
Y 

is a maximum . It is our object to inspect whether such damping of 
the nutation actually occurs, and if so, to find how rapid it is, and 

how it can be expedited. 

In two important extreme cases, however, T is indeed a constant 

of motion. The obvious one of these is the case of infinite friction, 

when the system,degenerates into a single rigid body. The other is 
+* 

the more interesting (and perhaps novel) case of zero friction . 
Let us now inspect the effect of the parameter f. 

* The underlying principle of mechanics is invoked often enough in 
specific applications, but - to our knowledge - has never been 
stated in the full force and generality it deserves; it seems akin 
to Schwartz's inequality and to the second law of thermodynamics. 
Cf. also (5). 

\, 2 ** In this case, of course, any combinatign of T, L and L can be 6 a constant of motion. However, only L would survive as such when 
the friction is introduced. 



6. VERY URGE FRICTION 

With f + oo it i s  r e a d i l y  seen t h a t  ( i f  the  torque f p  i s  t o  

r e t a i n  i t s  physical  s igni f icance ,  i . e . ,  remain f i n i t e )  p 3 0 ,  and 

the  whole assembly becomes a r i g i d  body with the  moments of i n e r t i a  

K1, K2, and K j  ; equations (c )  become, accordingly 

The solut ions  of these  equations a r e  wel l  knownx, bu t  w i l l  be 

reviewed b r i e f l y ,  i n  order t o  "blend" them with those of the  more 

complicated cases of O <  f <m. The k i n e t i c  energy of the  system 

is  

* The formal so lu t ions  a r e  i n  terms of e l l i p t i c  functions - which, i n  
f a c t ,  can b e s t  be defined ( 4 )  as sui tably-scaled  so lu t ions  of these  
equations. These so lu t ions  can be summarized as  follows: The eev- 
a r a t r i x  between the  two groups of loops of Figure 2 l i e s  i n  a plane 

L-t/Li = . , / ( K ~ / K ~ ) ( K ~  - K1)/(K3 - K1) = S, say. For nutat ions about 

&is 1, and i n i t i a l  c o n d i t i o n s ~  i n  the  1 - 3  plane, the  solut ions  are:  
L = L cn(k,u); L2 = L sn(k,u); L1 = L dn(k,u). The modulus 
3 30 2max 10 

k = (L /L ) S i s  0 a t  a x i s  1 and 1 on the  separa t r ix .  The inde- 
pendeni0va8able is u s t / ~ ,  the  u n i t  of time being U = K1 times 

, , / K ~ K ~ / ( K ~  - K2)(K3 - K ~ ) / L ~ .  For nutat ions about a x i s  3 one may 

e i t h e r  consider k > 1, o r  (as i s  more customary) take  l/k as  modulus, 
with L1 = L1 cn ( l /k ,u ) ,  L = L dn( l /k ,u) ,  e t c .  It should be e m -  
phasized tha? the  modulus 2 of 8 e  e l l i p t i c  functions character izes  not 
only the  physica l  system, but a l s o  the  i n i t i a l  condit ions.  This i s  
somewhat as though a change i n  the  i n i t i a l  condit ions changed the  
  system"^ which, a f t e r  a l l ,  i s  the  basic c h a r a c t e r i s t i c  of non-linear 
systems. 



and the t i p  of the vector L ( i n  our nutating system 1, 2,  3) therefore - 
l i e s  on the surface of an e l l ipso id  w i t h  semiaxes , q, 
. The paths of L are  the intersections of t h i s  e l l ipso id  with 

3 - 
the sphere L~ = const (= l), and the motion therefore i s  periodic. 

Figure 2 shows these paths f o r  our case of K ~ / K ~ / K ?  = 1/1.1/2.1, which - 
is &2 sexzple of a disc-ah3ped, or "oblste", asseablyi in t h i s  case 

* 
the nu-tations about axes 1 and 3 a re  s table ,  while the  spin about 2 

i s  unstable. The T-ell ipsoid always has the same proportions, but - 
it i s  very important t o  note - the magnitude of T must be between two 

extremes, f o r  these intersections t o  occur. In our case T i s  maximum 

f o r  a pure spin about 1, whewthe e l l ipso id  is wholly outside the 

sphere, touching it only a t  i t s  smallest semlaxis -1 and it i s  

minimum f o r  a pure sp in  about 3 ,  when the e l l ipso id  i s  whofly inside 

the sphere, touching it only a t  i t s  l a rges t  semiaxis m. 
3 

Incidentally,  from the condition b = 0 i n  the  equations (b) i t  

i s  readi ly  seen tha t  the  torque F necessary t o  hold these two bodies 

"frozen" i s  

so t ha t  the inequali ty K1 # K (or I1 # I , or  (as  J. Sternberg 
2 2)  

put i t )  an "incompatibility" of these two bodies, is a necessary 

condition f o r  invoking the mechanism of t h i s  f r i c t i o n .  

* In aNewtonian coordinate system, of course, it is the axis  1 
which nutates about t he  s ta t ionary LJ e t c .  - 

18' 



7. FAIRLY LARGE FRICTION 

With f  f i n i t e  but suf f ic ien t ly  large we should expect t h a t  the 
! 

motion 0'2 the two-body system would be somewhat l i k e  t h a t  of a r i g i d  

body, and the t r a j ec to r i e s  of - L (or  w )  - would be similar t o  those of 

Figure 23 except t h a t  these t ra jec tor ies  w i l l  keep "slipping" towards 

the loops of the  lower k ine t ic  energy, viz . ,  generally from axis 1 t o  

axis 3 .  The assembly thus becomes a "nutation damper", ending always 

with the pure spin about axis  3. This i s  i l1ustrated;for the  case 

f  = 10, i n  Figure 3 which has been drawn by the differential. analyzer. 

Four features dist inguish Figure 3 from Figure 2: 

F i r s t ,  the mul t ip l ic i ty  of the t r a j ec to r i e s  of Figure 2 i s  replaced, 

i n  e f fec t ,  by a single long t ra jectory (or by any  t ra jec tory  intermediate 

between any two swings of t h i s  long t ra jec tory) .  Of course, a motion 

s t a r t i ng  i n  a close proximity t o  axis 1 would be' d i f f i c u l t  t o  obtain on 

a d i f f e r en t i a l  analyzer, f o r  such motion would be slow i n  s t a r t i n g  

(it might best  be obtained by running the t ra jec tory  backwards). 

Second, the  question whether the motion s e t t l e s  on the posit ive 

o r ' t h e  negative axis J i s  a question of whether the passage from what 
d 

resembles one s e t  of loops on Figure 2 t o  the  other occurs a f t e r  

"bouncing away" from one o r  the  other "saddle point"; for  t h e  reader 

may'sense the existence of two such saddle points, roughly i n  the 

v ic in i ty  of the posit ive and the negative axis  2. Thus, when s t a r t i ng  

with small nutations about axis 1, the whole assembly can s e t t l e  with 

axis  3 e i t h e r  pa ra l l e l ,  o r  an t i -para l le l ,  t o  the space-fixed vector L. - 
Figures 3 and 4 (and one t ra jec tory  on Figure 5 )  show motion ending at 

the "north pole" of the  sphere. On each f igure  the intersections of 

the  long t ra jectory with the meridian passing through axis 1 thus mark 

a ser ies  of points s t a r t i ng  a t  which the motion goes t o  the north pole. 

The same would hold f o r  suf f ic ien t ly  closely neighboring points on t h i s  

meridian; so t h i s  se r ies  of points becomes a se r ies  of sub-arcs of 

t h i s  meridian. I n  the regior) of loops about the pole these sub-arcs 

blend together; but i n  the  region of loops about axis 1 the s i tua t ion  i s  



more complicated. It can eas i ly  be "interpolated" (and with the 

d i f f e r en t i a l  analyzer it can eas i ly  be shown "experimentally") t h a t  

for  some t r a j ec to r i e s  which s t a r t  between such sub--arcs i n  t h i s  

region the motion would "bounce away" from a saddle point near t he  

negative axis  2 ,  and would proceed t o  the south pole. Therefore i n  

t h i s  region t h i s  meridian can be divided into a se r ies  of a l te rna te  

sub-arcs (and the whole region, into  a se r ies  of a l te rna te  s t r i pes ) ,  

s t a r t i ng  i n  which the motion would go e i the r  t o  the north o r  t o  the  

south pole. On the r e s t  of the sphere the s i tua t ion  i s  obviously 

symmetrical, the symmetry being one of a rota t ion through 180' about 

axis 2. It i s  natural  t o  inquire what would happen t o  those two 

t r a j ec to r i e s  which are  the precise boundaries between these two "s t r ipes";  

one might expect t h a t  they would f a l l  in to  one or'  the other saddle point  

on posi t ive  o r  negative axis  2 and would "stay there". I n  the following 

( i n  section 10) we s h a l l  touch upon t h i s  matter b r ie f ly ;  but here we 

need only warn the reader t h a t  there are  complications: the saddle 

points a r e  not necessari ly on axis  2, and are  not necessari ly points of 

(even unstable) equilibrium. However, it i s  obvious tha t  any t r a j ec to ry  

i n  a close v i c in i ty  t o  these two "c r i t i ca l "  t r a j ec to r i e s  may spend an 

extremely long time i n  a close v i c in i ty  of one or  the other saddle point 

near axis  2. 

Third, the  "undamping" of the nutations about 1 proceeds f a s t e r  

than the damping of the nutations about 3. This featde of our mechanism, 

however, may be affected by a change i n  the law of f r i c t i o n  employed. 

Final ly ,  our three-dimensional representation of a four-dimensional 

problem i s  necessari ly crude. Properly, the representation should 

include some statement on the fourth variable (L6, u6 o r  p ) ,  whose 

var ia t ion corresponds t o  any parameter distinguishing the d i f fe ren t  
*, 

t r a j ec to r i e s  on Figure 2 '. 
* '  Such curves a r e  ea s i ly  obtained on the d i f f e r en t i a l  analyzer, but 

are  omitted here f o r  simplicity.  Thevar ia t ion  of any such four th  
variable has the  character of rapid osc i l l a t ions  superposed upon a 
slow changej but it is, perhaps, only an indication of t h i s  slow 
change t h a t  i s  of i n t e r e s t  as a parameter varying along our long 
t ra jec tory .  The rapid osc i l l a t ions ,  of course, are  of i n t e r e s t  as 
indicating themechanism by which the "incompatibility" of t he  two 
bodies invokes the f r i c t i on .  



8. MODERATE FRICTION 

One should expect tha t  between the two extremes of f r i c t i on ,  

f = oo and f = 0 ,  there  might ex i s t  a par t icu la r  value of f r i c t i o n  

a t  which the damping of the nutations i s  "maximized"; and tha t  t h i s  

i s  t o  be sought f o r  f r i c t i o n  f < 10. Indeed, Figures 4 and 5 ,  
representing the cases of f = 2 and f =.5, do show an increase i n  

the r a t e  of damping. Two features,  however, may be noted. The gain 

i n  the r a t e  of t h i s  damping diminishes, so t ha t  t h i s  r a t e  i s  appar- 

en t ly  approaching some maximum; and the "undamping" of the nutations 

about 1 becomes much more pronounced and f a s t e r  than the damping of 

the nutations about 3. 

In  f ac t ,  the passage from f = a, t o  f = 0 i s  accompanied by a 

rather-puzzling,  almost "quali tat ive",  change i n  the behavior of the 

system: there a r i s e s  the tendency f o r  L t o  s t i ck  for  a long time - * 
i n  the v i c in i ty  of axis  2 . We sha l l  presently see t ha t  t h i s  

complexity can be traced t o  the  f a c t  t ha t  of the three pa i r s  of 

equilibrium points of the single-body system (the points on the axes 

1, 2, 3 i n  Figure 2 ) )  only one remains t r u l y  an equilibrium point when 

the f r i c t i o n  i s  introduced. This i s  the pa i r  on axis  3 (La = L2 = p = 0 ) .  1 
The other two cease t o  be equilibrium points.  

This phenomenon might be best  inspected by considering next the 

other (and very interest ing)  extreme., the case of f = 0. 

* This tendency seems t o  be quite d i s t i n c t  fmrn (though it i s  
undoubtedly re la ted  t o )  the  f ac t  t h a t  the two "c r i t i ca l "  t ra jec tor ies  
on Figures 3, 4, 5 wouldrarrive a t  some "saddle points" and "stay 
there". 



8. ZEXO FRICTION 

With f = 0 ,  L (or w ) becomes a constant parameter, and our 6 6 
fourth-order system degenerates into  another third-order system: 

It may be noted t h a t  with L 0 these are ,  i n  e f f ec t ,  the 6 =  
equations f o r  the nutations of a ra ther  hypothetical r i g id  body having 

the moments of i n e r t i a  K1, K and I In  our example I << K < K 
2 3. 3 1 2' 

and t h i s  hypothetical body i s  a th in  spindle along axis  3, which i s  

considerably d i f fe ren t  from our device made r ig id .  The solutions, of 

course, a re  the e l l i p t i c  functions cn, sn, dn of time. 

On the  other hand, the  terms i n  L i f  they could be taken by 6' 
themselves (e  .g.,  i n  t he  case of a very large L ), could be viewed 6 
as forming a system 

which represents the c i r cu l a r  nutations of another hypothetical, 

axially-symmetric (and again considerably different  from our physical. 

system) r i g i d  body with the moments of i n e r t i a  K1 = K = any K,  and 
2 

K = I + K; the  solutions being the c i rcu la r  functions cos, s i n  - plus 
3 3 

a constant ( for  L ~ ) .  Thus the functions L L f o r  t h i s  zero-fr ic t ion 
1' L2' 3 

case might be said  t o  have the following re la t ion  t o  the  c i rcu la r  and 

e l l i p t i c  functions: 

I f  the system - 2 = - -  f (x) yields  e l l i p t i c  functions, and the system 

= g(y) yields  c i rcu la r  functions, the  functions L1, L2, L are  given 
3 

by the system 



The shapes of the curves of Ll(.t), L2(t), L (t) are indeed strongly 5 
reminiscent of the elliptic functions. The analytical solution of this 

very interesting case has been achieved by Dr. Eeslovas Masaitis of BRL(~). 

For our present descriptive purposes (and for blending with the more 

general Pour-dimensional case) the relationship of these functions to 

the elliptic functions is, unfortunately, complicated (they are generally 

square roots of the ratios of fourth-degree polynomials in elliptic 

functions, although there are some simplifications ) . 
There are three pairs of "equilibrium" points (at which - L = 0): 

(A)  L1 = L = 0 ,  L = +  LY; viz., on axis 3. 
2 3 

-1 -1 
( 8 )  L1 = [ ( I 3  

- K2 1 - L615 -I I = 0;  viz., in the plane 

2 - 3, at L2 = 2 Lm, L9 = L6/(l - I~/K~). 

-1 -1 (c) L2 = 0 ,  [ ~ ~ ( 1 ~  - Kl ) - L I -' 
6 3 1 = 0;  viz., in the plane 

1 - 3, at L = + L  1 = L~/(' - 13/K1). 

The simplest way to determine which ones of these are saddle points 

(are unstable) and which are centers ("stable"), is to consider the 

kinetic energy ellipsoid, which in this case can be written,as 

X 
so that the center ~f this ellipsoid is raised by L6, and its semiaxes 

a r e c ~ ,  *,-. In our example this ellipsoid is roughly a thin 

horizontal "disc"., Gith the major axis parallei to axis 2. It can be 

Visualized from an inspection of Figures 8. WhenM is minimum this 

"disc" is wholly inside the sphere, touching it (in the vicinity of its 

major semiaxis m) only at the points B; accordingly, these points, 
* There is no loss of generality in reckoning L6 positive. 



i n  the v i c in i ty  of the saddle points of Figure 2, become centers .  

With a large M, the "disc" i n  e f f ec t  merely s l i c e s  off two (or j u s t  

one) horizontal spherical  segments; so t ha t  the  points A a r e  centers,  

too. The points C of tangency of the "disc" and sphere i n  the v i c in i ty  

of the intermediate semiaxis of the "disc" - and i n  the  v i c in i ty  

of what were the centers a t  axis 1 on Figure 2 - become saddle points.  

As compared with Figure 2 ,  Figures 8 c a l l  fo r  an addi t ional  

parameter because they no longer u t i l i z e ' t h e  simplification 

L ~ / L ~  = I~/(I~ + 16) of Figure 2. 

The pecul ia r i ty  of the  behavior of t h i s  physical system is indeed 

due t o  t h i s  reversal; viz. ,  

the centers on axis  1 i n  Figure 2 become the saddle points~ C i n  

Figures 8. 

the saddle points on axis  2 i n  Figure 2 become the centers B i n  

Figures 8; however, 

the centers on axis  3 i n  ~ i & e  2 remain the centers A i n  Figures 8. 



10. VERY SMALL F R I C T I O N  

We have mentioned that when the friction is introduced and we revert 

to a fourth-.order system, the points A (with the additional qualification 

that B = 0 )  remain equilibrium points. For the points B and C ,  however, 

the requirement that one or the other bracket of equations (c) is zero - 
i.e., that L = ~ ~ / ( l  -I /K ) or L = L /(1 - I /K. ) - generally 

3B 3 2 F 6 3 1 
contradicts the requirement (for a point of equilibrium) that p = 0, i.e., 

that L = ~ ~ ( 1  + I /I ). Points B will remain points of equilibrium only 
3 3 6 

in the case where 

which is not the case in our example: 1/(1 - .1/1.1) f 1+ .1/2, and which 
cannot be the case with both the assumption I I and the requirement 4 =  5 
I2 # 13. Thus for K # K2 and f f 0, strictly speaking, equilibrium 

3 
points B and C do not exist. 

~imilari~, we may no longer use the argument similar to that which 

we used in passing from the case of infinite friction to the case of 

fairly large friction, for the quantity M (which determines the size of 

the T-ellipsoid) does not necessarily have properties analogous to those . 
of T ; viz., M as a function of t is not necessarily negative-definite. 

Nevertheless, we may expect that with very small friction the 

trajectories will be somewhat similar to those of Figures 8. In this 

sense we shall speak of points B' as "quasi-centers" for the loops 

similar to those of Figures 8. 
I 

The stability of points B so far (with our approach) could be 

determined only through numerical computation. It can be described 

(for our example only) as follows: 

1. As far as the loops about the points are concerned, these -- 
quasi-centers are very stable asymptotically, in the sense that the 

motion damps to them very rapidly. 



2. As far as the location of the points d is concerned, these - 
quasi-centers are unstable, with the axis 2 as the position of the 

unstable equilibrium of the points E!. That is, if the loops around 

6 settle with the'quasi-center $, at the axis 2 exactly, the vector 
L will remain at that point; but more generally, during these oscilla-- - 
tions the point J! slips away from the axis 2, first extremely slowly, 

and then faster and faster. 

3. The slippage of the points $ away from the axis 2 seems to 
2 

proceed along a particular curve on our sphere of L . 
4. This slippage of the points $passes into a fast nutation 

about one of the centers A. 

5. Nutations about the centers A appear asymptotically stable. 

However, the rate of damping of the nutations about these centers 

becomes extremely srdl - so that it becomes difficult to distinguish, 
with the differential analyzer, whether the centers A are truly 

asymptotically stable, or whether there might not exist some 
* 

asymptotically-stable "small circle" about the poles A . 
These features can be seen on Figure 6 (f = "1 ) and Figure 7, 

(f = .02). 

These empirical conclusions may, of course, be modified by a 

change in the law of friction employed. 

* The stability of points A, and the fact that they are the drily 
stable points have been recently proven by D. C. bewis (7). ', 



11. C R r P I C A L  F R I C T I O N  

Now, of course, an increase in friction increases the damping. 

It is not difficult to find, by trials, a vdue of f (in our example 

this turns out to be approximately f = .125) with which the behavior 

of the system can be said to represent most sharply the border-line 

(or the blend) between the types of behavior represented by Figures 

5 and 6. The behavior may perhaps be $escribed as follows. ~otion 

starting in the "polar zone" of our sketches passes at once into a 

damping nutation about axis 3. Motion starting in the "tropical" 
I1 and "temperate" zones rapidly drops" to the curve mentioned in item 

3 above, and practically stops there for a while - and then proceeds, 
with increasing velocity, into a damping nutation about axis 3. 



2 REMARKS AND DISCUSSION 

We f e e l  t h a t  a d i f f e r en t i a l  analyzer - provided it is adjusted 

very careful ly  (and/or provided with a number of auxi l iary compensating 

c i r c u i t s )  - i s  an excellent t oo l  f o r  the  rough "empirical" exploration 

of t h i s  so r t .  Its advantage over the d i g i t a l  machinery i s  the  ease 

of access, of visualization,  and of inspection of the "blends" between 

those types of behavior of the system which a t  f i r s t  glance appear t o  

be basical ly  d i f fe ren t  from previous experience. Its shortcoming 

( i n  addit ion t o  the general shortcoming of the "empirical" mathematical 

approach) i s  a need f o r  careful adjustments, ttnd an apparent s ens i t i v i t y  

of the machine t o  the type of c i r cu i t ry  chosen. 

Our example w a s  l imited t o  the body 4, 5 ,  6 being a " th in  disc" 

(I6 = 21). A few studies were done also with a " f a t  disc" (1 < I ~ / I  < 2 ) .  

Surprisingly, the  f a t  disc  performs much be t t e r  than the th in  disc: the 

osc i l l a t ions  a r e  slower, and the damping i s  f a r  more pronounced. As the 

disc approaches a sphere ( I  +I), the vector L appears t o  s t a r t  approach- 6 - 
ing the axis  3 asymptotically and without nutations. As the disc becomes 

a spindle (I6 < I ) ,  however, the  motion passes in to  a slow and quickly- 

damping nutation about axis 2 .  Thus t h i s  mechanism allows a "s tab i l iza-  

tion" of a'spindle only i n  t h i s  sense: the spindle can be put eventually 

in to  'a pure cartwheeling motion, i n  which the " i n e r t i a l  member" ( the  

small body 1, 2, 3, which i s  long along axis 1) arranges i t s e l f  perpen- 

dicular  t o  the f i n a l  axis  of ro ta t ion  (the axis  2 ) ,  but i n  which the 

or ientat ion of t h i s  axis  with respect t o  the spindle (the pr incipal  

body 4, 5 ,  6)  is, unfortunately, aleatory.  

A number of refinements of t h i s  system are  possible. A t  t h i s  time 

we visual ize  only the following refinements: 

(a) A more thorough inspection of the inequality 

which as  we have noticed, i s r t he  reason f o r  the i n s t a b i l i t y  of the points 

B (ma which represents an approach t o  the condition K3 = K~). 



(b) An exploratory inspection of the  case where the body 1, 2, 3 
i s  the pr incipal  body ("a f a t  e l l i p t i c a l  disc"), with the body 4, 5, 6 
the small (symmetrical) " i n e r t i a l  member". 

( c )  An exploratory inspection of the poss ib i l i t y  of reinforcing 

the i n e r t i a l  action of the  assembly of the  type (b) by "flywheel gearing" .* 
( d )  An exploratory inspection of the e f f ec t  of var ia t ion of the 

law of f r i c t i o n  employe&. 

While t h i s  paper is l imited t o  purely passive damping, the "empirical" 

approach based on these principles should eventually f a c i l i t a t e  the inspec- 

t i on  of more complicated mechanisms, which may possess springs, controls, 

power sources, and/or loss  of mass of the s a t e l l i t e .  

From the b a l l i s t i c  viewpoint, the most interest ing feature of t h i s  

device i s  i t s  strong tendency to  s t i ck  - temporarily - with the spin 

about the diameter of the disc  (axis 2) .  It i s  t h i s  feature - as  well 

as  the poss ib i l i t y  of constructing an equivalent of "negative f r ic t ion" , 

(viz,  an energy source) - t ha t  seems t o  leave hope tha t  an eventual 

"internal" s tab i l iza t ion  of a spindle might be possible.  However;that 

i s  a matter of "synthesis", i .e.,  of basic changes i n  the physical 

system considered here. 

SERGE J. ZAROODNY 

* A crude experimental model of such a "flywheel gearing" device shows 
an excellent "nutation dfanping" performance. It i s  interest ing t o  
note tha t  the equations of motion of such device are  basical ly  the 
same as considered here; only the expressions f o r  the constant 
coeff ic ients  are  dif ferent .  
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LIST OF SYMBOLS 

moment of i n e r t i a  of a r i g id  body 

sum of the twomoments of i n e r t i a  about the same axis 

angular momentum 

kinet ic  energy 

time; dot indicates d/dt 

angular veloci ty  

-"7 
f r i c t i o n  torque coeff ic ient  

f r i c t i o n  torque 
2 

i n  the f r i c t i on le s s  case, 2T - L6 / I ~  

Subscripts: 

~umbegs indicate an axis  of the coordina.te system 

A,B,C indicate the  equilibrium points i n  the  f r i c t i on le s s  case. 
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1st BODY (AXES 1,2,3;1,< Iz) 

2nd BODY (AXES 4,5,6;I=IZI 
4 5 

I 2 

FIG. (I-SCHEMATIC ILLUSTRATION OF THE PRINCIPLES OF A 
MUTATION DAMPER, SHOWING THE COORDINATE SYSTEM IN WHICH, 
ON THE.SUBSEQUENT FIGURES, THE MOTION OF THE TIP OF THE 
VECTOR - L OF ANGULAR MOMENTUM IS GIVEN. 



SYSTEM IS A- RIGID BODY. T IS CONSTANT. 

NUTAT!- ABOUT AXES ! AND 3 ARE STABLE, ABOUT AX!S 2 UNSTABLE 
33 ,' 



FIG, 3: POLHODES FOR F A I R L Y ~  LARGE FRICTION ( f a  101 
NUTATIONS ABOUT AXlS ~'"UNDAMP" AND 

PASS OVER TO DAMPEDNUTATIONS ABOUT AXlS 3. 
34 



FIG. 4: POLHODES FOR MODERATE FRICTION ( f  = 2) 

THE RATE OF "UNDAMPING" ABOUT AXlS I 
HAS INCREASED AND SO, TO A LESSER DEGREE, HAS THE 

RATE OF DAMPING ABOUT AXlS 3. 



3 
NOTE AN IMPERFECTION OF THE 
DIFFERENTIAL ANALYZER: THE 
TRAJECTORY SHOULD STAY ON 
THE SURFACE OF THE SPHERE. 

I 
FIG. 5 : POLHODES FOR MODERATE FRICTION (f = 0.5) 

TWO CURVES ARE SHOWN ONE SETTLING ABOUT 
THE POSITI~,E AXIS 3 T ~ E  O T H E ~  ABOUT THE NEGATIVE 
AXIS 3. THE UNDAMP~NG IS NOW VERY RAPID, BUT THE 
GAIN IN THE DAMPING.RAT,E HAS DIMINISHED. 

36 



I 
FIG. 6:  POLHODES FO VERY SMALL FRICTION ( f=  0.U 

BEHAVIOR OF THE SYSTEM HAS $HANGED. THE 
VECTOR C TENDS ..-an TO LINGER ."a- .. ABOUT A QUASI-CENTER" B' 

lvcnn A A I ~  L 



FIG ?: P O L H O U ~ T I O N  (f  = 0 02) 
THE "QUASI-CENTER ', B ,IS NOW CLEARLY DEFINED 

AS L LOOPS THIS POINT, THE POINT SLIPS AWAY FROM 
AXIS 2,  SLOWLY AT FIRST, BUT WITH I N C R E W  SPEED. 



F10.8a: POLHODES FOR ZkRO FRICTION (f.0. Lano) 
' 

SYSTEM IS A (HYPOTHETICAL .RIGID BODY. T IS 
'CONSTANT. POINTS A AND B ARE C k NTERS, POINT C 

IS A SADDLE. 
39 





FIG.&: POLHODES FOR ZERO FRICTION (f.0, L.80.5) 



I 
f I G . 8 d :  POLHODES FOR ZERO FRICTION ( f  = 0. L.=0.75) 
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